Как найти, НОК или общий знаменатель чисел 63, 79 и 30?
Наименьшее общее кратное, НОК чисел 63, 79 и 30 - решение онлайн.Для решение задачи нахождения наименьшего общего кратного чисел 63, 79 и 30 в первую очередь необходима разложить числа 63, 79 и 30 на простые множители.
Разложим число 63 на простые множители.Результатом разложения числа 63 на простые множители являются числа = 1, 3, 3, 7.
Следовательно число 63 можно записать так = 1 * 3 * 3 * 7.
Разложим число 79 на простые множители.Результатом разложения числа 79 на простые множители являются числа = 1, 79.
Следовательно число 79 можно записать так = 1 * 79.
Разложим число 30 на простые множители.Результатом разложения числа 30 на простые множители являются числа = 1, 2, 3, 5.
Следовательно число 30 можно записать так = 1 * 2 * 3 * 5.
шаг 2. Запись равенств:
63 = 1 * 3 * 3 * 7
79 = 1 * 79
30 = 1 * 2 * 3 * 5
необходимо привести к такому виду, чтобы все повторяющиеся значения встречались только один раз, и были возведены в такую степень, сколько раз встречаются в равенстве.
63 = 11 * 32 * 71
79 = 11 * 791
30 = 11 * 21 * 31 * 51
шаг 3. Возъмем все три правые части равенств и объединим знаком умножения:
11 * 32 * 71 * 11 * 791 * 11 * 21 * 31 * 51
шаг 4. Убираем все одинаковые значения и выстроим значения по возрастанию:
11 * 21 * 31 * 32 * 51 * 71 * 791
шаг 5. Каждое из выписанных чисел взять с наибольшим показателем степени, остальные исключить:
11 * 21 * 32 * 51 * 71 * 791
шаг 6. Выполняем вычисления:
11 * 21 * 32 * 51 * 71 * 791 = 1 * 2 * 9 * 5 * 7 * 79 = 49770
Таким образом наименьшее общее кратное НОК или общий знаменатель чисел 63, 79 и 30 является число 49770.